Control point based exact description of higher dimensional trigonometric and hyperbolic curves and multivariate surfaces
نویسنده
چکیده
Using the normalized B-bases of vector spaces of trigonometric and hyperbolic polynomials of finite order, we specify control point configurations for the exact description of higher dimensional (rational) curves and (hybrid) multivariate surfaces determined by coordinate functions that are exclusively given either by traditional trigonometric or hyperbolic polynomials in each of their variables. The usefulness and applicability of theoretical results and proposed algorithms are illustrated by many examples that also comprise the control point based exact description of several famous curves (like epiand hypocycloids, foliums, torus knots, Bernoulli’s lemniscate, hyperbolas), surfaces (such as pure trigonometric or hybrid surfaces of revolution like tori and hyperboloids, respectively) and 3-dimensional volumes. The core of the proposed modeling methods relies on basis transformation matrices with entries that can be efficiently obtained by order elevation. Providing subdivision formulae for curves described by convex combinations of these normalized B-basis functions and control points, we also ensure the possible incorporation of all proposed techniques into today’s CAD systems.
منابع مشابه
Control point based exact description of curves and surfaces, in extended Chebyshev spaces
Extended Chebyshev spaces that also comprise the constants represent large families of functions that can be used in real-life modeling or engineering applications that also involve important (e.g. transcendental) integral or rational curves and surfaces. Concerning computer aided geometric design, the unique normalized B-bases of such vector spaces ensure optimal shape preserving properties, i...
متن کاملTENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE
In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...
متن کاملA Static Flexure of Thick Isotropic Plates Using Trigonometric Shear Deformation Theory
A Trigonometric Shear Deformation Theory (TSDT) for the analysis of isotropic plate, taking into account transverse shear deformation effect as well as transverse normal strain effect, is presented. The theory presented herein is built upon the classical plate theory. In this displacement-based, trigonometric shear deformation theory, the in-plane displacement field uses sinusoidal function in ...
متن کاملHyperbolic surfaces of $L_1$-2-type
In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.
متن کاملQuasi-Quartic Trigonometric Bézier Curves and Surfaces with Shape Parameters
In this paper a new kind of quasi-quartic trigonometric polynomial base functions with two shape parameters λ and μ over the space Ω = span {1, sin t, cos t, sin2t, cos2t, sin3t, cos3t} is presented and the corresponding quasi-quartic trigonometric Bézier curves and surfaces are defined by the introduced base functions. Each curve segment is generated by five consecutive control points. The sha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1404.3767 شماره
صفحات -
تاریخ انتشار 2014